Solvent Extraction

A significant method based on relative solubility of an analyte in two immiscible liquids

Used to

remove interference concentrate species prior analysis produce measurable form of a species

Theory is very applicable to chromatography.

Solvent extraction theory

For a solute, Z, in equilibrium exists between an aqueous and organic solvent:

At equilibrium, we have:

$$K_{p} = \begin{bmatrix} Z \end{bmatrix}_{1}$$

This assumes ideal behavior at low concentrations. It actually results in a ternary system.

Solvent extraction theory

When dealing with aqueous species, the solute may exist in equilibrium with several other forms.

Example

- a weak acid

organic phase 1

aqueous phase 2

HA

HA

H+ + A-

Distribution ratio

Due to competing equilibria, we define an alternate form of the partition coefficient:

distribution ratio =
$$D_c = \begin{bmatrix} total \ Z \end{bmatrix}_1 = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

Total Z represents the total of all equilibrium forms of species Z.

This ratio is based on specific solution conditions such as pH.

Distribution ratio

$$K_{P} = [HA]_{1} / [HA]_{2}$$

and
$$K_a = [H^+]_2 [A^-]_2 / [HA]_2$$

then
$$D_c = [HA]_1$$

 $[HA]_2 + [A^-]_2$

$$= \begin{array}{c} [HA]_{1} \\ [HA]_{1} \\ K_{p} \end{array} + \begin{array}{c} [K_{a}[HA]_{1} \\ K_{p}[H^{+}]_{2} \end{array}$$

$$= \frac{K_{P}[H^{+}]_{2}}{[H^{+}]_{2} + K_{a}}$$

Obligitory
derivation
designed to
impress you
with how much
I know. Do
you really care
about this?

pH dependence of D_c

In the case of a weak acid, D_c is dependent on solution pH.

$$D_{c} = \frac{K_{P}[H^{+}]_{2}}{[H^{+}]_{2} + K_{a}}$$

(1)

g D_c

(2)

A plot of $\log D_c$ vs $\log pH$ shows two regions.

2 - D_c is pH dependent Its best to hold pH and other factors constant.

pН

Solute partitioning

The D_c can be defined based on total equilibrium concentrations as:

$$D_c = \frac{C_1}{C_2}$$

where:

1 is the phase being extracted into 2 is the phase being extracted from

All solution conditions are assumed constant. Total solute amounts are based on solution volume.

Solute partitioning

The initial moles of solute is C₀V₂ so at equilibrium:

$$n_{\text{solute1}} = C_1 V_1$$

$$n_{solute2} = C_2V_2$$

In terms of fractional amounts:

$$p = fraction in 1 = \frac{C_1 V_1}{C_1 V_1 + C_2 V_2}$$

Amount extracted

q = fraction in 2 =
$$\frac{\mathbf{C}_2 \mathbf{V}_2}{\mathbf{C}_1 \mathbf{V}_1 + \mathbf{C}_2 \mathbf{V}_2}$$

Amount remaining

Solute partitioning

If we define the volume ratio (V_R) as

$$V_R = \frac{V_1}{V_2}$$

then

Amount
$$q = D_{\bullet}V_{D} + C_{\bullet}V_{D}$$

Amount remaining

Single extractions

To help keep things straight, let's define some conditions for a single extraction or contact unit

Most often, we are interested in extracting from an aqueous into an organic phase.

organic phase

density > or < 1.00 g/ml - call it phase 1

aqueous phase

density ~ 1.00 g/ml

- call it phase 2

Single extractions

Single Extractions

If the aqueous phase is what we are extracting from, then:

V - volumes, all must be in same units

C - total concentrations

C₁ - organic concentration

C₂ - aqueous concentration

C₀ - initial concentration

Solute extraction

We can determine the percent extracted as:

$$%E = 100 p$$

Example

For a solute, X, determine [X] and total amounts in each phase if:

$$V_1 = 100.0 \text{ ml}$$

$$V_2 = 100.0 \text{ ml}$$

$$D_c = 3.0$$

$$[X]_0 = 1.00 \times 10^{-2} M \text{ (in aq. phase)}$$

Solute extraction

Since
$$V_1 = V_2$$
, $V_R = 1$,

$$\frac{Amount}{Posterior} q = \frac{1}{D_0 V_p + 1} = \frac{1}{3.0 + 1} = \frac{1}{4}$$

Solute extraction

Determining amounts

We started with 1.00 x 10⁻² M in 100.0 ml of the aqueous phase so:

$$n_T = (0.100 \text{ I})(1.00 \times 10^{-2} \text{ M}) = 1.00 \times 10^{-3} \text{ mol}$$

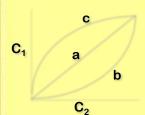
$$n_1 = 7.5 \times 10^{-4} \text{ mol}$$
 $M_1 = 7.5 \times 10^{-3}$
 $n_2 = 2.5 \times 10^{-4} \text{ mol}$ $M_2 = 2.5 \times 10^{-3}$

$$M_1 = 7.5 \times 10^{-3}$$

$$n_2 = 2.5 \times 10^{-4} \text{ mol}$$

$$M_2 = 2.5 \times 10^{-3}$$

Deviations from ideal behavior


Solutions can vary from ideal behavior either from the start or during an extraction.

Possible causes include:

- dissolution of one phase into the other
- solute saturation of a phase
- reaction of solute with a phase
- alteration of conditions like pH during an extraction.

Deviations from ideal behavior

You can end up with three types of behavior partition isotherms.

- a ideal behavior
- b solute association, dimerization, etc.
- c phase 1 is an absorbed phase. Approaching saturation

Deviations from ideal behavior

You must also remember that we assumed that activity and concentration were proportional.

We attempt to avoid problems by:

- Working at low concentrations
- Maintaining factors like pH as constants

We do our best to stay as close to ideal conditions as possible.

Multiple extractions

It is not always possible to quantitatively remove the solute using a single extraction.

Your options typically are to:

Increase the volume of the extracting solvent - not usually a good idea.
Use multiple extractions.

Multiple extractions

For n extractions, the amount of solute in each phase can be determined by:

Solute concentrations can be found by:

organic
$$pq^{n-1} C_0 V_2 / V_1 = pq^{n-1} C_0 / V_R$$

aqueous
$$q^n C_0 V_2 / V_2 = q^n C_0$$

Multiple extractions

Total amounts extracted are the sum of all extractions so:

$$(p + pq + pq^2 ... + pq^{n-1})C_0V_2 = (1-q^n)C_0V_2$$

or

$$1 - q^n = E$$
 , %E = 100 (1- q^n)

Multiple extractions

In our earlier example, 75% of a solute was removed with one extraction. We can determine how much would be removed from 10 sequential extractions.

$$q = 0.25$$

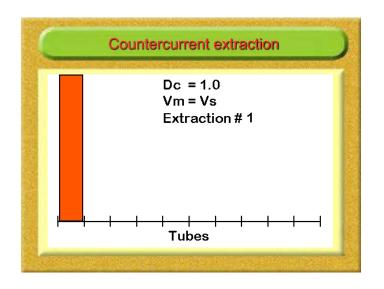
E
$$\approx 1 - 0.25^{10} = 1 - 9.6 \times 10^{-7}$$

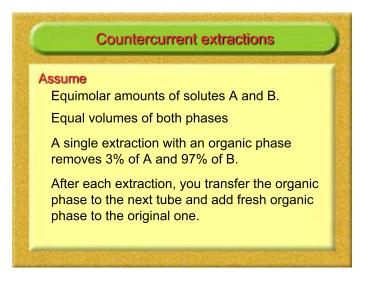
Countercurrent extractions

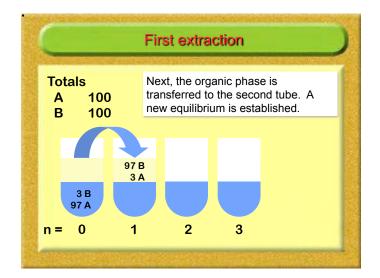
A precursor to chromatography.

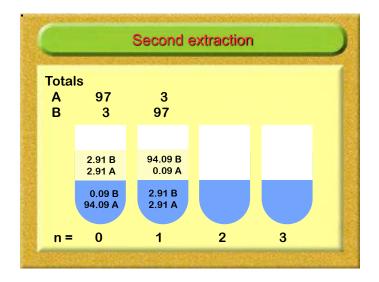

Multiple extractions can effectively remove a single species or a group of related species at the same time.

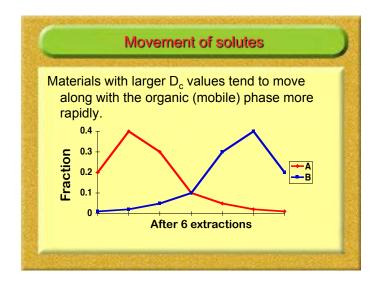
What do you do if the goal is to separate two or more species with similar D_c values?


Even if the D_c values for two species differ by 1000, you still can't get better than 97% purity.


Countercurrent extractions


We can conduct a sequence of extractions to effect quantitative separation of multiple solutes - countercurrent extraction




We transfer the extracting phase to the next tube and add fresh phase to the first.

